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ABSTRACT
Cooperative artificial intelligence with human or superhuman profi-
ciency in collaborative tasks stands at the frontier of machine learn-
ing research. Prior work has tended to evaluate cooperative AI per-
formance under the restrictive paradigms of self-play (teams com-
posed of agents trained together) and cross-play (teams of agents
trained independently but using the same algorithm). Recent work
has indicated that AI optimized for these narrow settings may make
for undesirable collaborators in the real-world. We formalize an
alternative criteria for evaluating cooperative AI, referred to as
inter-algorithm cross-play, where agents are evaluated on teaming
performance with all other agents within an experiment pool with
no assumption of algorithmic similarities between agents. We show
that existing state-of-the-art cooperative AI algorithms, such as
Other-Play and Off-Belief Learning, under-perform in this para-
digm. We propose the Any-Play learning augmentation—a multi-
agent extension of diversity-based intrinsic rewards for zero-shot
coordination (ZSC)—for generalizing self-play-based algorithms
to the inter-algorithm cross-play setting. We apply the Any-Play
learning augmentation to the Simplified Action Decoder (SAD) and
demonstrate state-of-the-art performance in the collaborative card
game Hanabi.
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1 INTRODUCTION
Superhuman artificial intelligence (AI) has become increasingly
commonplace for competitive tasks such as chess [6, 29, 31], Atari
[23, 29], Go [29, 30], StarCraft II [36], DotA 2 [3], and poker [4].
The success of competitive AI is due, in large part, to recent ad-
vancements in deep reinforcement learning (RL). In contrast, the
domain of cooperative AI—where autonomous agents must collab-
orate with humans or separately-trained agents toward a shared
objective—is relatively understudied within reinforcement learning
[2].

Further limiting the scope of cooperative reinforcement learn-
ing research is the fact that existing work has relied on encoding
domain knowledge into the training algorithm [18] and evaluating
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cooperative AI in the narrow problem settings of self-play [16] and
zero-shot coordination cross-play [17, 18]. Self-play (SP) refers to co-
operative teams composed of agents that were all trained together,
often being identical copies of one another [14, 34]. Zero-shot co-
ordination (ZSC)1 refers to a more general setting where agents
must cooperate with other agents for which they have no prior
interactions. However, past work has analyzed a narrow form of
ZSC, commonly referred to as “cross-play” (XP), whereby teams
are composed of agents trained independently but using the same
underlying algorithm. In this paper we disambiguate this narrow
form of XP by referring to it as intra-algorithm cross-play (intra-XP).

Recent work has indicated that training cooperative AI to max-
imize intra-XP performance does not necessarily produce agents
that perform well in more general, real-world settings where there
are no guarantees that teammates share algorithmic underpinnings.
Siu et al. [32] conduct a series of human-AI teaming experiments
within the collaborative card game Hanabi using an AI teammate
with state-of-the-art intra-XP Hanabi scores. Siu et al. conclude that
human Hanabi players have strong adverse reactions to playing
with the high-performing intra-XP agent, and strongly prefer a
different AI teammate that was not optimized for intra-XP perfor-
mance. This is evidence that intra-algorithm cross-play may be a
poor indicator for predicting real-world performance of cooperative
AI and that a more general scoring function is needed.

In this paper we make two contributions that advance the state-
of-the-art for cooperative RL. First we propose a formal definition
of a more comprehensive ZSC evaluation criteria, referred to as
inter-algorithm cross-play (inter-XP), whereby an agent’s teaming
performance is measured as an average over a pool of teammates
with no assumption of algorithmic similarities between agents. Our
second contribution is an RL training augmentation, referred to
as Any-Play, which provides an auxiliary loss function and intrin-
sic reward to help self-play-based agents generalize to the more
challenging setting of both intra-algorithm and inter-algorithm
cross-play. The Any-Play (AP) augmentation is based on the prop-
erty of diversity from intrinsic reinforcement learning [10] and does
not require environment-specific implementations. Using the ZSC
benchmark environment Hanabi, Any-Play agents produce near-
state-of-the-art performance in self-play and intra-XP settings, and
outperform all other agents in the inter-XP setting.

2 RELATEDWORK
This section helps position the inter-XP scoring function and Any-
Play learning augmentation in the context of broader research on
multi-agent reinforcement learning (MARL) and zero-shot coordi-
nation (ZSC). We introduce the benchmark ZSC environment of
Hanabi used in on our experiments (Sec. 4) and provide related

1Also referred to as ad-hoc cooperation [7]



work on Hanabi AI. We also introduce related work from the field
of intrinsic reinforcement learning that motivate construction of
the Any-Play augmentation presented in Sec. 3.

2.1 Zero-Shot Coordination
Reinforcement learning (RL) and multi-agent reinforcement learn-
ing (MARL) has recently been used to create superhuman AI in
single-agent [23], 1-vs-1 [29, 30, 36], 1-vs-N [4], and N-vs-N [3]
competitive games. However, a relatively under-explored branch
of MARL research focuses on cooperative games—such as Han-
abi [2, 17, 18] and Overcooked [9, 33, 39]—and mixed coopera-
tive/competitive games such as Pommerman [28], Bridge [41], and
Diplomacy [13]. Cooperative games offer unique challenges beyond
purely competitive games. Cooperative agents must often possess a
theory of mind—i.e. the ability to infer teammates’ mental states and
predict their future actions—in order to optimally coordinate on
shared objectives [26, 27]. Furthermore, due to the shared reward
signal, it can be very difficult to even evaluate an individual agent’s
contribution to a collaborative game [1, 11, 40].

In this paper we focus on cooperative games in the zero-shot
coordination (ZSC) setting [18]. The ZSC setting evaluates the per-
formance of an agent in a cooperative game by pairing it with
never-before-seen teammates and evaluating the resulting overall
team performance. Many of the most-cited MARL algorithms per-
form poorly in the ZSC setting due to their reliance on self-training2
and parameter sharing [11, 12, 14, 16, 20, 21, 34]. These techniques
often lead to “secretive conventions” where agents who are trained
together adopt idiosyncratic behaviors that are not interpretable
by human teammates or other agents not present during training.

Hu et al. [18] propose the Other-Play (OP) algorithm that at-
tempts to avoid such secretive conventions by teaming agents with
“symmetrically re-labeled” copies of themselves during training.
Symmetries in an environment are defined as re-labeling of states
and actions that leave trajectories unchanged aside from the re-
labeling itself. The OP algorithm requires the environment-specific
symmetries to be given as input, which make it impractical for
more complex environments where symmetries are not easily pre-
determined. Bullard et al. [5] propose the Quasi-Equivalence Dis-
covery (QED) algorithm that can iteratively discover symmetries
in complex environments.

Neither OP or QED fully prevent the creation of secretive con-
ventions because not all conventions break symmetries in the envi-
ronment. To this end, the Off-Belief Learning (OBL) algorithm has
been proposed by Hu et al. [17]. Instead of a symmetry-based ap-
proach, OBL proves convergence to a unique policy in ZSC settings
by assuming prior actions were taken by a fixed random policy but
future actions will be taken by the policy in training. This process
can then be iterated by using the trained policy from one itera-
tion as the fixed policy (replacing the random policy) in the next
iteration in order to train a new, higher-level policy. While OBL
achieves state-of-the-art intra-XP performance, we demonstrate
in Sec. 4 that it can perform poorly in the inter-XP setting when
paired with teammates not trained with OBL. This is likely due

2Also referred to as “self-play” which is closely related to—but not completely synony-
mous with—the self-play (SP) evaluation criteria. For example, a scripted or random
bot can be evaluated in the SP setting, without ever undergoing self-play training.

to the fact that the unique policy OBL agents converge upon has
no guarantees of being robust to teaming with other policies, and
non-OBL agents are unlikely to have converged upon the unique
OBL policy, independently.

2.2 Hanabi AI
The card game Hanabi has become a benchmark environment for
training and evaluating cooperative, zero-shot AI agents; much in
the same way that chess and Go have been benchmarks for competi-
tive AI [2]. Hanabi is akin to a multiplayer version of Solitaire where
players must work together to arrange their cards in ordered stacks
based on color. The game can be played with 2-5 players. Players do
not see their own cards, only those of their teammates, and there
are strict rules on what can be communicated between players.
The game ends when all of the cards are successfully stacked or
after 3 invalid actions are taken by the team. The game is scored
based on the number of cards stacked at the end of the game with
a maximum score of 25.

In 2018 and 2019 the Hanabi Challenge was held to instigate
the development of Hanabi AI [37]. Agents were scored in two
different competitive tracks, “Mirror” (i.e. self-play) and “Mixed”
(i.e. inter-algorithm cross-play), with competition-winning scores
of 20.6/25 and 13.2/25 in each track, respectively. This Mixed track
gives a historical example of the inter-XP setting that we formalize
as a general-purpose ZSC evaluation criteria in Sec. 3.1.

Siu et al. [32] provide a recent survey of performance of coop-
erative AI in 2-player Hanabi. Early work in Hanabi AI focused
on developing rule-based agents that encoded expert knowledge
of the game into decision policies [25, 35, 38]. More recent work
has leveraged reinforcement learning to produce state-of-the-art
performance in the SP and intra-XP settings of 2-player Hanabi.
Hu and Foerster [16] propose the Simplified Action Decoder (SAD)
that outperformed all of the 2018 and 2019 Hanabi Challenge com-
petitors in the SP setting with a score of 24.0/25. SAD leveraged
privileged information about a teammate’s actions during a cen-
tralized training phase. It also provided a environment-specific
auxiliary learning task (SAD+AUX) that aimed to predict unob-
served information from the agent’s observation history. The SAD
self-play performance was later improved to a score of 24.6/25 by
adding a search algorithm, referred to as SPARTA, on top of the
learning algorithm [20]. The SAD and SAD+AUX models form the
basis on which we demonstrate the Any-Play learning augmen-
tation presented in Sec. 3. When applied to 2-player Hanabi, the
previously discussed OP and OBL algorithms produced state-of-the-
art performance in the intra-XP setting with top scores of 21.7/25
and 23.8/25, respectively [17, 18].

2.3 Diversity and Intrinsic RL
The Any-Play learning augmentation is inspired by work in the
field of intrinsically-motivated reinforcement learningwhere agents
learn useful skills within environments that lack extrinsic, “goal-
oriented” reward signals. In the absence of extrinsic reward signals,
intrinsic-RL agents seek to maximize information-theoretic val-
ues such as mutual information between states and actions [24] or
entropy of state visitation distribution [15]. The “Diversity Is All
You Need” (DIAYN) method seeks to maximize the diversity of an



agent’s skills (see Sec. 3.2 for definitions of “skills” and the diversity
objective) [10]. Typically such intrinsically-motivated training has
been used as a “warm-start” in single-agent RL that enables agents
to quickly learn to solve extrinsically-motivated tasks by leverag-
ing skills learned during the intrinsic pre-training. We adapt the
DIAYN method to a multi-agent setting and use it to train diverse
play-styles in one agent, referred to as the specializer, as well as
accommodating play-styles in a partner agent, referred to as the
accommodator. By designing the accommodator to be robust by
playing with a diverse set of teammate play-styles during training,
we are able to demonstrate state-of-the-art inter-XP performance
when paired with a range of non-Any-Play agents in a ZSC setting.

The Trajectory Diversity (TrajeDi) method—published concur-
rently with the writing of this paper—proposes a similar, diversity-
based approach to ZSC and demonstrates intra-XP performance
beyond that of OP and OBL in a modified version of Hanabi [22].
TrajeDi forms a population of SP-trained policies that are regular-
ized to be as diverse as possible and then trains a final policy that
provides the best-response to all other policies in that population.
The TrajeDi results only report a narrow set of SP and intra-XP
scores; there is no consideration of inter-XP performance. Qual-
itatively, TrajeDi represents a much more complicated approach
than Any-Play; so much so that, for it to be tested in Hanabi, the
rules of the game had to be modified to make TrajeDi computa-
tionally tractable. No such environment modifications are required
for the Any-Play method. Due to the timing of the publication of
the TrajeDi paper, as well as the fact that it required an ad hoc
variation of Hanabi, we do not provide a quantitative comparison
with Any-Play in Sec. 4.3.

Fictitious co-play (FCP)—another method published while this
paper was under review—also proposes a diversity-based archi-
tecture for training cooperative AI [33]. Similar to Any-Play and
TrajeDi, FCP generates a pool of independently-trained collabo-
rative agents; checkpointing the agent pool at various skill levels
throughout the training process (this is akin to the Any-Play spe-
cializer agent). Then the FCP trains a “best-response” agent to
all checkpointed-agents in the training pool (this is akin to the
Any-Play accommodator agent). Like Any-Play, FCP proposes a
much more computationally tractable approach than TrajeDi. The
key shortcoming of FCP is that it relies on a behaviorally diverse
training pool, yet it has no mechanism to quantify or ensure such
diversity; this fact is explicitly noted in the FCP “Limitations and
future work” section [33]. In contrast, we formulate Any-Play with
an intrinsic augmentation that regularizes the set of specializer
agents to be as quantifiably diverse as possible (see Sec. 3.2).

FCP was tested in the Overcooked cooperative environment and
demonstrated state-of-the-art collaboration with human teammates.
Due to the algorithmic similarities with Any-Play, FCP’s success in
Overcooked gives us reason to expect that Any-Play will generalize
beyond the environments presented in this paper while providing
a stronger theoretical grounding for diversity during training. Due
to the timing of publication—as well as the fact that no FCP Hanabi
agents currently exist—we do not provide a quantitative comparison
with Any-Play in Sec. 4.3.

Canaan et al. [7] also propose a diversity-based approach for
generating AI Hanabi agents that uses genetic algorithms and

hard-coded Hanabi play conventions3. This approach relies heav-
ily on expert-designed, domain-specific, rule-based systems that
do not generalize to other environments. In contrast we pursue a
environment-agnostic reinforcement learning approach that has
potential to generalize beyond Hanabi.

3 METHODS AND MODELS
Our work considers Dec-POMDPs [19] defined as the tuple
(I,S,A,O,𝑇 , 𝑅). I is the finite set of 𝑛 agents. S is the state space
and the joint state of the system is 𝑠𝑠𝑠 ∈ S. A is the joint action
space and a joint action is given as 𝑎𝑎𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑛) ∈ A. O(𝑠𝑠𝑠) is
the joint observation function and a joint observation is given as
𝑜𝑜𝑜 = (𝑜1, 𝑜2, ..., 𝑜𝑛) ∼ O(𝑠𝑠𝑠). The state transition function, 𝑇 (𝑠𝑠𝑠 ′ |𝑠𝑠𝑠,𝑎𝑎𝑎),
represents probability of arriving in joint state 𝑠𝑠𝑠 ′ when taking
joint action 𝑎𝑎𝑎 in state 𝑠𝑠𝑠 . The reward is drawn from the reward
function 𝑟 ∼ 𝑅(𝑠𝑠𝑠,𝑎𝑎𝑎). The joint stochastic policy is represented as
𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑜𝑜𝑜) = (𝜋1 (𝑎1 |𝑜1), ..., 𝜋𝑛 (𝑎𝑛 |𝑜)𝑛), where 𝜋𝑖 represents the local
policy of agent-𝑖 . A joint observation-action trajectory up to time
𝑡 is defined as 𝜏𝜏𝜏 =

(
𝑜𝑜𝑜 (0) ,𝑎𝑎𝑎 (0) ,𝑜𝑜𝑜 (1) ,𝑎𝑎𝑎 (1) , ...𝑜𝑜𝑜 (𝑡 )

)
. The undiscounted

return over trajectory 𝜏𝜏𝜏 is 𝐺𝜏𝜏𝜏 =
∑𝑡
𝑙=0 𝑟

(𝑙) and the expected return
over joint policy 𝜋𝜋𝜋 is 𝑉 (𝜋𝜋𝜋) = 𝑉 (𝜋1, ..., 𝜋𝑛) = E𝜏𝜏𝜏∼𝜋𝜋𝜋 [𝐺𝜏𝜏𝜏 ]. Let 𝛼 rep-
resent a stochastic policy-generator algorithm that generates a local
policy 𝜋 from distribution Π𝛼 (e.g. a reinforcement learning algo-
rithm). Let C represent the set of all policy generator algorithms
such that 𝛼 ∈ C. Note that we use bold font to represent joint quan-
tities, subscripts to represent different agents, and parenthetical
superscripts to represent specific time steps.

3.1 Cooperative Evaluation Functions
Here we provide function definitions for scoring the performance
of a policy-generator algorithm (e.g. reinforcement learning algo-
rithm), 𝐽 (𝛼) : C → R, under four different evaluation paradigms.
For simplicity we provide 2-player forms of the evaluation func-
tions.

Self-Play (SP) scores represent the expected return of any agent
𝑖 generated (i.e. trained) by algorithm 𝛼 when playing cooperatively
with a copy of itself.

𝐽SP (𝛼) = E𝜋𝑖∼Π𝛼
[𝑉 (𝜋𝑖 , 𝜋𝑖 )] (1)

Intra-Algorithm Cross-Play (intra-XP) scores represent the
expected return of any agent 𝑖 generated by algorithm 𝛼 when
partnered with any agent 𝑗 that has been generated independently
by the same algorithm 𝛼 .

𝐽intra-XP (𝛼) = E𝜋𝑖∼Π𝛼 ,𝜋 𝑗∼Π𝛼

[
𝑉 (𝜋𝑖 , 𝜋 𝑗 )

]
(2)

This score has been used in recent work as the default measure
of cross-play performance [17, 18, 22], but excludes information
about how well agents trained with a particular algorithm work
with agents trained with other algorithms.

Inter-Algorithm Cross-Play (inter-XP) score is the expected
return of any agent 𝑖 generated from algorithm 𝛼 ∈ C when part-
nered with any other agent 𝑗 generated independently from a sepa-
rate algorithm 𝛽 ∈ C \ 𝛼

𝐽inter-XP (𝛼) = E𝜋𝑖∼Π𝛼∈C ,𝜋 𝑗∼Π𝛽∈C\𝛼

[
𝑉 (𝜋𝑖 , 𝜋 𝑗 )

]
(3)

3Many details have been omitted, please see Canaan et al. [7].



Figure 1: DIAYN - Diverse skills are learned by an agent
(left) without an external reward signal by making each skill
uniquely distinguishable by a discriminator (right).

Figure 2: Any-Play - Ideal accommodative result of incorpo-
rating an intrinsic diversity reward in a cooperative MARL
environment for ZSC. The accommodator (eye) learns to dis-
cern the specializer’s (robot) latent variable (intent) based on
its actions, in addition to learning to provide the best respond-
ing action to that action-intent pair.

Equation 3 gives a more formal definition of an evaluation paradigm
that has been loosely defined in other works (e.g. the “Mixed” track
in the Hanabi Challenge) [8, 9, 33, 37]. However, much of the prior
work on cooperative reinforcement learning has largely ignored
the inter-XP setting [17, 18, 20, 22].

Inter-algorithm cross-play scores depend on the experiment pool,
Ĉ, of other algorithms used as teammates. This has several im-
plications. First, inter-XP scores are not relevant when compared
across different experiment pools. Second, it is possible to bias an
experiment pool to favor a specific algorithm or class of algorithms.
For example, if we have an experiment pool composed largely of
algorithms designed for zero-shot coordination (e.g. OP, OBL, AP),
then these algorithmsmay have an unfair advantage in the inter-XP
settings compared to algorithms in the pool that weren’t explic-
itly built on the ZSC premise. Canaan et al. [7] propose a way for
systematically generating experiment pools from a narrow class of
rule-based agents; however, it does not allow for generating pools
of modern learning-based agents [17, 18]. Therefore we need a way
to evaluate the inter-XP performance between state-of-the-art ZSC
algorithms while accounting for potential bias in the experiment
pool toward ZSC algorithms.

One-sided-ZSC Cross-Play (1SZSC-XP) setting is an attempt
to balance this trade-off between bias and comparison with the most
relevant learning algorithms. Let B represent the set of algorithms
that were not explicitly designed for the zero-shot coordination set-
ting (in our experiments in Sec. 4 we have B = {IQL,VDN, SAD}).
The 1SZSC-XP score represents the expected score of any agent 𝑖
from a ZSC-based algorithm 𝛼 ∈ C \ B when partnered with any
agent 𝑗 trained with non-ZSC algorithm 𝛽 ∈ B.

𝐽1SZSC-XP (𝛼) = E𝜋𝑖∼Π𝛼∈C\B ,𝜋 𝑗∼Π𝛽∈B

[
𝑉 (𝜋𝑖 , 𝜋 𝑗 )

]
(4)

3.2 Extending DIAYN for ZSC
In order to maximize inter-XP score our augmentation, referred
to as Any-Play, attempts to regularize agent behavior to be more
‘accommodative’ to the many possible different ways of succeeding

in a cooperative environment. The method we use is inspired by
DIAYN’s [10] learning of distinct skills without an external reward.

DIAYN Objective. To describe the DIAYN objective, we borrow
their notation, where 𝑆 and 𝐴 are random variables representing
states and actions, respectively. 𝑍 ∼ 𝑝 (𝑧) is a latent variable on
which an agent’s policy is conditioned, and a policy conditioned on
a fixed 𝑍 is the skill referred to earlier [10]. 𝐼 andH represent mu-
tual information and Shannon entropy. In the DIAYN objective, the
entropy of actions given statesH[𝐴|𝑆] and the mutual information
between states and skills, 𝐼 (𝑆 ;𝑍 ) is maximized. This incentivizes
agents to behave randomly, but also encodes influence of the sam-
pled 𝑍 on which states are visited for a policy conditioned on 𝑍 .
To ensure that states visited, and not actions, distinguish the skills
from each-other, the mutual information between skills and actions
given the state, 𝐼 (𝐴;𝑍 |𝑆) is minimized. The DIAYN objective is
then:

F (𝜃 ) = 𝐼 (𝑆 ;𝑍 ) + H [𝐴|𝑆] − 𝐼 (𝐴;𝑍 |𝑆) (5)

DIAYN then rearranges this objective to beF = H[𝑍 ]−H [𝑍 |𝑆]+
H [𝐴|𝑆, 𝑍 ] which implies 𝑍 must have high entropy, but also im-
plies that 𝑍 should be inferrable from 𝑆 , which is approximated
via a learned discriminator 𝑞𝜓 (𝑧 |𝑠) making the new objective to
maximize (again, quoting from DIAYN [10]):

F (𝜃 ) = H[𝐴|𝑆, 𝑍 ] +E𝑧∼𝑝 (𝑧),𝑠∼𝜋 (𝑧) [log(𝑞𝜓 (𝑧 |𝑠))− log(𝑝 (𝑧))] (6)

where 𝜋 (𝑧) is a policy conditioned on 𝑧 (a skill). For the full
reasoning and derivation, please refer to Eysenbach et al. [10].

The implementation of this objective is accomplished by iterat-
ing an unsupervised exploration stage and a supervised discrimi-
nation stage. The exploration stage is accomplished by training a
soft actor critic to learn a policy conditioned on the the uniformly
sampled latent variable 𝑧 attempting to maximize the intrinsic re-
ward 𝑟𝑧 (𝑠, 𝑎) = log(𝑞𝜓 (𝑧 |𝑠)) − log(𝑝 (𝑧)). The discrimination stage
updates 𝑞𝜓 (𝑧 |𝑠) to better discriminate between skills (policies con-
ditioned on differing fixed 𝑧 ∈ 𝑍 ).



The end result of training a policy and a discriminator in this way
is represented abstractly in Figure 1, where the policy must learn
to act in random but distinct ways depending on its input for the
discriminator 𝑞𝜓 to be able to distinguish the skill it is performing.

Any-Play Objective. We use this objective of learning distinct
skills from random navigation of an MDP to augment the co-
operative MARL self-play objective of maximizing an external
environment-specific (extrinsic) reward. Also, because we consider
environments that are partially observable, we replace 𝑠 with 𝑜

where 𝑜 is an agent’s observation. Differing from DIAYN, we refer
to the latent random variable 𝑍 in this paper as intent and the pol-
icy conditioned on a fixed 𝑧 as a play-style (instead of a skill). This
change in terminology is due to the external reward encoding the
need for all policies conditioned on a fixed 𝑧 (play-styles / skills) to
both maximize the external environment reward (get a high score),
but still be distinguishable from each-other by a discriminator. This
suggests that each policy resulting from a specific intent (𝑧), will
be a distinct winning strategy, or play-style. The key idea behind
leveraging this objective for ZSC is that an agent trained with a
partner exhibiting multiple distinct play-styles will learn a policy
that is accommodative of many different ways of accomplishing the
cooperative goal of the environment. This idea is represented in
Figure 2 as a multi-colored line resulting from the discriminator
partnering with multiple different play-styles.

To augment a multi-agent system with Any-Play, we need to
add the DIAYN components (the conditioned policy and the intent
discriminator). We condition one of the agents on a sampled latent
variable 𝑧, and train a discriminator 𝑞𝜓 to distinguish the resultant
different play-styles during training. The ability of the discrimi-
nator to correctly distinguish play-styles composes the intrinsic
reward, which is scaled appropriately and added to the external
environment specific reward.

𝑅Any-Play (𝑠, 𝑜, 𝑎, 𝑧) = 𝑅env (𝑠, 𝑎) + 𝜆 log(𝑞𝜓 (𝑧 |𝑜)) (7)

where 𝜆 is a scaling hyper-parameter.

Augmenting SADHanabi Agents with Any-Play. In the two-player
Hanabi scenario, we designate one player as the specializer and
the other as the accommodator. We use a uniform categorical
random distribution with 𝑁 possible intents to sample our intent 𝑧
at the beginning of every episode 𝑍 ∼ {1, ..., 𝑁 }. During training,
the specializer is given 𝑧 as a one-hotted vector of length 𝑁 , as
shown in Figure 3. For the intent discriminating component of
Any-Play, a dense neural net 𝑞 composed of the accommodator’s
LSTM and a single-layer DNN is added with the supervised task of
correctly predicting the sampled 𝑧 throughout the episode. We use
categorical cross-entropy as the loss for the discriminator 𝑞:

𝐿𝑞 = −⟨𝑧, 𝑙𝑜𝑔(𝑧)⟩ where 𝑧 = 𝑞𝜓 (𝑜) ≡ [𝑞𝜓 (1|𝑜), ..., 𝑞𝜓 (𝑁 |𝑜)] (8)

where 𝑧 is a one-hot vector and ⟨·, ·⟩ is the inner product. This
loss is scaled by 𝜆 and is back-propagated through the LSTM and
lower-level components of the accommodator SAD architecture
during training. Reward is shared between the accommodator and
specializer and consists of the externally given Hanabi reward
(number of cards correctly played) added to the intrinsic intent
discrimination reward, which is the negated and scaled intent loss.

𝑅Any-Play,𝑡 (𝑠𝑡 , 𝑜𝑡 , 𝑎𝑡 , 𝑧) = 𝑅Hanabi (𝑠𝑡 , 𝑎𝑡 ) + 𝜆⟨𝑧, log(𝑞𝜓 (𝑜𝑡 ))⟩ (9)

Algorithm 1: Any-Play training on a 2-player game
Input :𝑁 ,env,numGames
Output :𝜋spec, 𝜋accomm

1 for 𝑖 ∈ {0, ..., numGames} do
2 𝑧 ∼ RandomInt (0, 𝑁 ) ;
3 𝑜 ← env.reset ();
4 while not 𝑜.gameEnded do
5 𝑎spec ← 𝜋spec (𝑧, 𝑜);
6 𝑎accomm ← 𝜋accomm (𝑜);
7 𝑧 ← 𝑞𝜓 (𝑜);
8 𝑙𝑧 ← −⟨𝑧, 𝑙𝑜𝑔(𝑧)⟩;
9 𝑜, 𝑟 ← env.step(𝑎spec, 𝑎accomm);

10 𝜓 ← 𝜓 − 𝜂 𝜕𝑙𝑧
𝜕𝑜 ;

11 𝑟 ← 𝑟 + 𝜆𝑙𝑧 ;
12 update 𝜋spec, 𝜋accomm
13 end
14 end
15 return 𝜋spec, 𝜋accomm;

Intuitively, the reward is higher when the accommodator can cor-
rectly guess the intent of the specializer based on its play-style.
Pseudo-code for this training process can be seen in Alg 1. The
optimal value for 𝜆 varies based on the number of intents 𝑁 and
agent architecture. To find a suitable 𝜆, we use heuristics that restart
training and modify 𝜆 if intent loss does not decrease (𝜆 too low)
or the reward does not increase (𝜆 too high) within the first several
training epochs at the beginning of experimentation.

4 EXPERIMENTS
We first show how Any-Play augmentation can achieve the per-
fect ZSC policy on a simple referential game taken from Hu et al.
[17]. We then survey Any-Play results on the more complex ZSC
benchmark Hanabi. Our code for running the Hanabi experiments
is publicly available at https://github.com/mit-ll/hanabi_AnyPlay
which is a fork of the SAD and OP codebase [16, 18].

4.1 Any-Play in a Simple Environment
The game consists of two players: Player 1 and Player 2. After
observing one of two randomly selected objects (“cat” or “dog”),
Player 1 can decide to leave the game for a small reward of 1, send a
message to Player 2 consisting of either a 0 or 1, or incur a penalty
of 5 by “lifting the curtain” to reveal the true object to Player 2.
After Player 1’s action, Player 2 can either leave the game for a
small reward of 0.5 or guess “cat” or “dog”. If Player 2’s guess is
correct, then both players receive a large reward of 10; an incorrect
guess penalizes both agents with a reward of −10.

In a purely self-play setting, the optimal strategy for Player 1
and Player 2 is to arbitrarily agree on a mapping (i.e. idiosyncratic
convention) between Player 1’s observation of the object and the
action of sending 0 or 1, leading to a score of 10 for every SP game.
In some training instances, sending 1 could come to mean “cat”, but
in others it could come to mean “dog”. In a ZSC setting, however,
the most robust policy is for Player 1 to always lift the curtain and

https://github.com/mit-ll/hanabi_AnyPlay


Figure 3: a.) Baseline Architecture (SAD). An optional secondDNN and skip connections are used to produce diverse architectures.
b.) The accommodator uses the output of the LSTM to predict the intent 𝑧 of the specializer. c.) The specializer uses a policy
conditioned on the intent (𝑧) sampled at the beginning of each game, incentivizing diverse play-styles across multiple games.

Figure 4: Simple environment cross-play matrices using Any-Play. Each matrix represents cross-play between 10 independently
trained agents each augmented with Any-Play, with varying number of intents. With Any-Play using four intents, the all-yellow
square indicates the best ZSC policy is achieved, where all agent pairings are compatible, matching the best-case of Off-Belief
Learning [17].

for Player 2 to only guess the object identity when the curtain is
lifted since Player 2 has no way of knowing what convention the
independently-trained Player 1 has adopted for its message passing.
This leads to a best-case ZSC score of 5.

Figure 4 illustrates intra-XP scores between 10 independently
trained Any-Play agents with 1-6 intents for the specializer. The
1 intent plot is a baseline that is equivalent to not augmenting the
training with Any-Play, since correctly predicting one intent is
trivial. Here we see a checkerboard pattern where white squares
correspond to maximum-scoring pairs that occur when separate
agents happen to have the same mapping for Player 1’s messages
and black squares are minimum-scoring pairs where agents have
reversed mappings of messages.

To understand the results for the 2-6 intent cross-play matrices
in Figure 4, remember that—during training—the Any-Play learn-
ing augmentation has the dual objectives of maximizing extrinsic
(environment-based) reward as well as making its latent intent vari-
able, 𝑧, as easy to discern as possible. Discerning latent intent is
given priority over the extrinsic reward during training by scaling
𝜆 in Equation 7. However, Player 1 only selects one of four possi-
ble actions per game (i.e. 2 bits of information per action), leaving
Player 2 to discern both latent intent variable and environmental

best action from a single piece of 2-bit information. After training—
during ZSC evaluation—only the extrinsic reward is considered,
not the intrinsic latent variable discrimination accuracy.

When Player 1’s action space is larger than its latent input space
(2 and 3 intents), it is possible for Player 1 to use its action to convey
its latent variable (< 2 bits) as well as some information about its
observation of the object. When the action space is smaller than the
latent input space (5 and 6 intents), then the action cannot uniquely
identify the latent variable, let alone the latent variable and the
object observation. In either case, during self-play training, players
can benefit from forming idiosyncratic conventions that convey
more or less information about the extrinsic environment or latent
variable. However these conventions can lead to imperfect ZSC
scores where only the extrinsic reward matters. This is why the 2,
3, 5, and 6 intent cross-plays show a checkerboard of varying ZSC
performance.

In the 4 intent case, the action space is exactly the size of the
latent input space, and self-play training converges to Player 1
perfectly communicating its intent variable 𝑧 (due to the scaling of
𝜆 rewarding such a policy in training), but giving no information
of its observation. Therefore, with the lifted curtain being the only
source of information on Player 1’s observation, Player 2 learns
to only trust the lifted curtain action in order to make a guess



at the object. This produces the best ZSC policy and the uniform
cross-play matrix shown in Figure 4.

4.2 Hanabi Experiment Setup
In this work, we only consider 2-player Hanabi games between AI
agents. Our algorithm experiment pool, Ĉ, is composed of a total of
128 different models trained from nine different policy-generator
algorithms; see Table 1 for list of algorithms.We apply the Any-Play
learning augmentation to the SimplifiedActionDecoder algorithm—
referring to this combination as SAD+AP—and generate 12 different
trained models using the same set of neural network architectures
presented in Hu et al. [18]. Similarly we apply Any-Play to the
auxiliary-task version of SAD [16] and generate 12 more trained
models for experimentation, referred to as SAD+AUX+AP. For all
AP-based algorithms, the accommodator is always used for cross-
play evaluations; the specializer is only used during training and
not involved with evaluation. We compare our 12 SAD+AP and
12 SAD+AUX+AP trained models with 104 baseline models across
seven algorithms; these models have been graciously provided by
authors of previous work. These baseline models include (quantity
in parentheses): IQL (12), VDN (13), SAD (13), and SAD+AUX (13)
from the original SAD paper [16]; the architecturally diverse SAD
(12), SAD+AUX (12), SAD+OP (12), and SAD+AUX+OP (12) trained
models from Other-Play [18]; and the level-5 (most competitive)
trained models (5) from Off-Belief Learning (OBL) [17].

Both the SAD+AP and SAD+AUX+AP algorithms are used to
train on four separate neural net architectures, with each architec-
ture used to train three models with unique seeds, resulting in a
total of 12 trained models for each algorithm. The four separate
architectures consist of the four possible combinations of having
one or two feed forward networks for the input, and including
or not including skip connections across the recurrent network.
We use the same distributed deep double Q-learning RL algorithm,
prioritized replay, and dueling network architecture as SAD, Other-
Play, and OBL [16–18]. Figure 3a details the neural net architecture
of SAD and SAD+AUX. The models are trained on a total of 500,000
batches with each batch consisting of 128 full-game trajectories.

Through a parameter search, we found that an intent number
of 𝑁 = 16 (when there are 2 feed forward DNNs and no skip
connections) and 𝑁 = 64 (otherwise) gave consistently good results.
These values are used to generate the data in Table 1. However, other
numbers of intents, such as 𝑁 ∈ {8, 16, 32, 48} also results in intra-
XP and inter-XP well above the baseline of SAD and SAD+AUX.

Algorithms are evaluated under the scoring functions described
in Sec. 3.1 with each pair of agents playing 2,500 games together.
For example, for the intra-XP score of SAD (from Eq. 2), all SAD
agents, across all architectures, are paired against each-other for
2,500 games. The mean of all these games, excluding where the
same agent plays itself, is the empirical SAD intra-XP score. For
the 1SZSC-XP setting, each model from each algorithm in the set
C \ B = { SAD+AUX, SAD+OP, SAD+AUX+OP, OBL, SAD+AP,
SAD+AUX+AP} is cross-played against every model in set B =
{IQL, VDN, SAD}.

To get the results in Table 1, we cross-played 128 different trained
agents (104 from prior work and 24 of ours), resulting in 16,384
separate pairings of 2,500 games each, resulting in almost 41M

Algorithm Self-Play Intra-XP Inter-XP 1SZSC-XP

IQL 23.8± .01 11.9± .01 11.1± .00 N/A
VDN 23.8± .01 8.1± .01 9.2± .00 N/A
SAD 23.9± .01 4.5± .01 7.3± .00 N/A
SAD+AUX 24.1± .01 17.7± .01 13.1± .00 5.9± .02
SAD+OP 23.9± .01 15.3± .01 12.2± .00 5.8± .02
SAD+AUX+OP 24.1± .01 22.1± .01 13.1± .00 5.6± .02
OBL 24.2± .02 24.2± .01 5.2± .00 1.0± .02
SAD+AP 21.6± .01 13.5± .01 10.3± .00 6.4± .02
SAD+AUX+AP 22.5± .02 20.4± .01 14.2± .00 7.4± .02

Table 1: Cross-play scores with standard error. While OBL
outperforms in self-play and intra-XP, Any-Play augment-
ing SAD+AUX outperforms all other algorithms in inter-XP,
with both Any-Play algorithms performing best in 1SZSC-XP.
IQL, VDN, and SAD form the cross-play set for 1SZSC-XP
evaluation, but are not, themselves, evaluated under this par-
adigm.

games played. This large amount of cross-play games gives us our
low standard error when compared to prior work [16–18].

4.3 Hanabi Experimental Results
Table 1 summarizes the experimental results with nine algorithms—
i.e. policy-generators used to train 128 distinct agents—evaluated
in self-play (Eq. 1), intra-XP (Eq. 2), inter-XP (Eq. 3), and 1SZSC-
XP (Eq. 4) settings. OBL scores highest in the SP and intra-XP
settings, followed closely by SAD+AUX+OP. This is in line with
results from prior work that show high intra-XP performance of
these algorithms [17, 18] and helps validate our experimental setup.
SAD+AUX+AP scores the highest in the inter-XP and 1SZSC-XP
settings when compared to all other algorithms within the experi-
ment pool listed in Table 1. This supports our claim that the Any-
Play learning augmentation helps agents better collaborate in ZSC
settings with never-before-seen teammates, even with those team-
mates that have no algorithmic similarities.

We note that OBL performs particularly poorly in the inter-XP
and 1SZSC-XP settings. This seems to imply that the OBL collabo-
ration relies heavily on shared algorithmic underpinnings, particu-
larly the convergence to a unique policy by independently trained
agents. Interestingly, the Any-Play algorithms had the lowest self-
play scores4 yet highest inter-XP scores. This is further evidence
that self-play scores are poor indicator for zero-shot coordination
performance.

As seen in Table 1, Any-Play (AP) significantly improves the
intra-XP score of SAD from 4.5 to 13.5, and provides some improve-
ment to SAD+AUX (17.7 −→ 20.4). Any-Play augmentation alone
(SAD+AP) increases inter-XP of SAD by 3 points.

While SAD+OP scores better than SAD+AP in intra-XP and
inter-XP, it achieves these scores by explicitly constraining the
space of learnable policies by destroying information (shuffling the
color of cards) deemed by the algorithm designer to likely cause
conflicting behavior in Hanabi. Any-Play’s effect on the otherwise

4Note that these self-play scores are still better then the competition-winning SP scores
from the 2018/2019 Hanabi Challenge [37].



Self-Play Intra-XP Inter-XP 1SZSC-XP

Self-Play 1 0.055 -0.23 -0.55
Intra-XP 1 0.24 -0.08
Inter-XP 1 0.89
1SZSC-XP 1

Table 2: Pearson correlation coefficients between cooperative
evaluation scores. 0 indicates no relationship, 1 (resp. -1)
indicates perfect positive (resp. negative) correlation

.

non-ZSC-capable SAD’s intra-XP, inter-XP, and 1SZSC-XP scores
makes it comparable (and in some cases superior to) previous state-
of-the-art ZSC augmentations [17, 18]. Furthermore, this effect is
achieved without destroying any information during training.

In the 1SZSC-XP setting SAD+AP outperforms SAD+OP,
SAD+AUX, SAD+AUX+OP, and OBL. In addition, combining AUX
with Any-Play results in an even higher 1SZSC-XP score. These
scores show that, even without environmental knowledge or knowl-
edge of the non-ZSC trained agents, you can achieve notably greater
cooperation with agents that were not trained to be zero-shot co-
operative.

We also conduct a correlation analysis to understand if there are
aggregate trends in SP, intra-XP, inter-XP, and 1SZSC-XP scores
across algorithms. Table 2 provide the Pearson correlation coef-
ficients between pairs of scoring functions based on the data in
Table 1. Interestingly, while self-play and intra-XP seem almost
uncorrelated, there is a notable negative correlation between self-
play and inter-XP as well as self-play and 1SZSC-XP. This may
be an indication that algorithm-specific conventions (e.g. OBL’s
convergence to a unique policy in independent training runs) can
raise self-play and/or intra-XP scores, but result in lower inter-XP
and 1SZSC-XP scores. There is also a strong positive correlation
betwen inter-XP and 1SZSC-XP scores, which may be expected due
to the fact they are both forms of inter-algorithm cross-play but
with differing experiment pools. We also observe a modest positive
correlation between intra-XP and inter-XP scores, which is not
immediately obvious from Table 1.

4.4 Experiment Pool Bias
Of the 104 baseline models with which we compare and cross-
play our augmentation, all of them use Q-learning, 92 of them
are built on top of VDN, and 74 of them incorporate the SAD
augmentation on top of VDN [16, 18], as OBL excludes SAD [17].
The fact that so many of the agents in our experiment pool are
based upon VDN and SAD is a potential source of experimental
bias (see Sec. 3.1 for further discussion). However, these algorithmic
similarities in the experiment pool are necessary if we want to draw
direct comparisons with state-of-the-art Hanabi agents since many
have grown from the same foundational work on SAD [16].

In investigating any potential bias these common characteristics
could have in regards to unfairly helping our algorithms, SAD+AP
and SAD+AUX+AP, we see that our algorithms may actually be
disadvantaged by applying Any-Play on top of SAD, as opposed
to applying it on IQL or VDN. This potential disadvantage comes
from the fact SAD under-performs IQL and VDN in intra-XP and

inter-XP settings, in spite of the large number of SAD-based models
in the experiment pool. Therefore it is conceivable that we could
improve our Any-Play intra-XP and inter-XP results by augmenting
VDN with Any-Play, instead of SAD; and that SAD-augmentation
does not give us an unfair bias in the experiment pool.

5 CONCLUSION
This work gives formal definition to the inter-algorithm cross-play
evaluation function to address the shortcoming in cooperative AI
research whereby agents have, historically, been evaluated in the
contrived settings of self-play and intra-algorithm cross-play for
zero-shot coordination.We proposeAny-Play—an intrinsic, domain-
independent training augmentation—and show how it can improve
intra-algorithm cross-play and outperform state-of-the-art base-
line algorithms in inter-algorithm cross-play within the card game
Hanabi. Furthermore the Any-Play augmentation quantifies and
regularizes diversity of agents during training, thus addressing a
shortcoming of similar methods such as Fictitious Co-Play [33].

This work opens several important questions for future work,
particularly relevant for human-AI teaming. Are inter-algorithm
cross-play scores a better predictor of human preference in zero-
shot human-AI teaming than self-play and intra-algorithm scores?
If not, then what are the quantifiable objective functions on which
AI can be trained in order to increase subjective human trust of AI
teammates?
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