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Industrial control systems (ICS) govern vital infrastructure
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The importance of ICS security is increasing

6

BlackEnergy (2015)
Industroyer (2016)

Triton (2017)

German Steel 
Mill (2014) ICS-CERT CVEs (by year)



ML-based ICS anomaly detection
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We ask: What are the best models and how to best train them?
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• Learn ICS behavior from system states
• Anomalies are rare: use unsupervised learning 

• Reconstruct future ICS states
• Compare with observed states (MSE)
• Minimize training MSE

• At test time:
• Apply MSE threshold
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Reconstruction-based anomaly detection

• Learn ICS behavior from system states
• Anomalies are rare: use unsupervised learning 

• Reconstruct future ICS states
• Compare with observed states (MSE)
• Minimize training MSE

• At test time:
• Apply MSE threshold
• Raise alarms if exceeded
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Prior work uses different...
• Datasets

• Architectures

• Techniques
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Prior work uses different...
• Datasets:

• SWaT, WADI, BATADAL
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Prior work uses different…
• Datasets:

• SWaT, WADI, BATADAL
• Architectures:

• Autoencoders, CNNs, LSTMs
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• Early stopping, feature cleaning
• Various model hyperparameters
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• We evaluate proposed ICS anomaly detection approaches:
• Across datasets, model architectures, and hyperparameters
• With a common methodology

• We identify four key techniques in methods:
• Needed for reproducible and correct evaluation!

• We describe the need for different ICS anomaly-detection metrics
• Explain why we should stop using the point-F1 score
• Use range-based metrics for better tuning and optimization

Our Contributions
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What models are best for 
ICS anomaly detection?
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Part 1
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Is there a best model?

Autoencoders can achieve “best” 
performance on all three datasets, 
but variance is high
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Is there a best model?

Prior “best” models 
perform similar to 
those we evaluated
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How important is model hyperparameter tuning?

Smallest model: F1 = 0.824 Largest model: F1 = 0.823

Model hyperparameter tuning has a 
limited impact on performance
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Part 2

How do 
range-based metrics affect 

tuning and optimization?



Point-F1: a common metric in ICS anomaly detection
• Point-F1 = Average between precision and recall

• Each instance in time is equally weighted
• But attacks and predictions are performed in segments
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Point-F1 does not capture segment-based objectives
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Point-F1 does not capture segment-based objectives
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• One attack fully detected

Point-F1 = 0.75



Which objectives are important?

68

vs.

[1] Tatbul, N., Lee, T.J., Zdonik, S., Alam, M., Gottschlich, J.: Precision and recall for time series. NeurIPS 2018.

Detect every attack? Detect all of attack?



Which objectives are important?

69

[1] Tatbul, N., Lee, T.J., Zdonik, S., Alam, M., Gottschlich, J.: Precision and recall for time series. NeurIPS 2018.

• Detected segments, instead of detected timesteps
• Captured by time-aware precision and recall metric [1]

vs.

Detect every attack? Detect all of attack?
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[1] Tatbul, N., Lee, T.J., Zdonik, S., Alam, M., Gottschlich, J.: Precision and recall for time series. NeurIPS 2018.
[2] Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms–the Numenta anomaly benchmark. 14th International Conference on Machine Learning and Applications. (2015)

vs.

• Detecting attacks earlier, rather than later
• Captured by Numenta metric [2]

Detect immediately? Detect later?
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Pre-process ICS dataset
Datasets: SWaT, WADI, BATADAL
Key techniques:
● Benign data shuffling
● Feature selection
● Attack cleaning

Train unsupervised 
ML model
CNN, LSTM: 1-5 layers, 4-256 units, 
50-200 history
AE: 1-5 layers, 1.5-4.0 compression
Key technique: Early stopping

Tune threshold
MSE threshold 𝛕, window length w 
objective: maximize point-F1 score
range-F1/Numenta scores

Evaluate against 
attacks at test time
Report final point-F1 score: 
attack precision, attack recall, 
early detection, range-F1

New training and evaluation methodology 
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Prior 
“best” 
CNN

Point-F1
tuning

Range-F1 tuning
(high precision)

Numenta tuning
(high recall)

6/18 detected, 32 false alarms

3/18 detected, no false alarms

11/18 detected, 89 false alarms
7 early detections
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Point-F1: a 2-layer 
autoencoder is best
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Range-F1: 1-layer 
CNN is best



Range-based metrics choose different optimals 
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Range-F1: For every 
dataset+architecture combination, 
optimal model always changes 



Range-based metrics choose different optimals 
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Point-F1: 
BATADAL CNNs 
perform poorly
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Range-F1: Many 
BATADAL CNNs 
perform well!



Range-based metrics choose different optimals 
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Compared to point-F1, range-based metrics provide 
a different view of what is optimal
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