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Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats
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Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats
Machine learning (ML) models show promise / are in use for detection
But, malware classification models may be susceptible to evasion

Creating useful defenses requires knowledge of how ML models can be attacked

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus ?view=0365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity

( : Carnegie Mellon University
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Deep Neural Networks (DNNs) for Static Malware Detection
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Program binary represented as variable length sequence of integers/bytes
e Asingle byte’s meaning depends on the values of bytes around it
* Byte values are treated as categorical

* Absolute difference between byte values has no meaning

Carnegie Mellon University

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv y La d
C Security and Privacy Institute

[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.



Deep Neural Networks (DNNs) for Static Malware Detection

DNN Malware
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Program binary represented as variable length sequence of integers/bytes
e Asingle byte’s meaning depends on the values of bytes around it
* Byte values are treated as categorical

* Absolute difference between byte values has no meaning
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Attacking ML Algorithms — Adversarial Examples

+ 0.007x

“Panda”

Adversarial Example

(image from Goodfellow 2015)

Attacks use classifier’s trained weights to craft imperceptible adversarial noise (or
perturbations) to cause misclassification

* Fast Gradient Sign Method (FGSM)

* Projected Gradient Descent (PGD)

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” arXiv [stat.ML]. arXiv. ‘ La Carnegle Mellon UIIIVGI'SIty
http://arxiv.org/abs/1412.6572. y Security and Privacy Institute



Attacking DNNs for Static Malware Detection

DNN Malware
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Must ensure all byte changes preserve binary functionality
Assume whitebox access to target model (can view trained weights)
e Qur paper also examines a blackbox threat model

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv ‘ La Carnf‘/gle Mell?n UIllVe?SIty
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435. y Securlty and Prlvacy Institute



Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P. Carnegie Mellon University
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In La . . i . ) I
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Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

* In-Place Replacement (IPR)

* Four types: preserv, swap, reorder,
equiv

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using

In-Place Code Randomization.” 2012. In Proc. IEEE S&P.

mov edx, [ebp+4] (8b5504)
sub edx, -0x10 (83eafo)
mov ebx, [ebp+8] (8b5d0e8)
mov [ebx], edx (8913)

mov ebx, [ebp+8] (8b5des8)
mov edx, [ebp+4] (8b5504)
sub edx, -0x10 (83eaf0)
mov [ebx], edx (8913)

Reorder (1/4 IPR)

H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In

Proc. AsiaCCS.
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Creating Adversarial Examples from Binaries

é;;587: ;éé ax, 0x10 iéé83c010)
0x458b: sub bx, ©x10 (6683eb10)
. . . . . 0x458F: , b 6639d8
To modify binaries without changing > e b (e
functionality, use functionality
preserving transformations:
ox4587: Jmp 0x4800 iéénezaaee)
0x458c: mov cX, cX (6689¢9)
ox458f: cmp ax, bx (6639d8)
é;ASOG: ééé ax, 0x10 Eéé83c010)
0x4804: sub bx, 0x1@ (6683eb10)
1 1 0x4808: 920
* Displacement (Disp) oxigos:  puehd o0
0x4806: push ebx (53)
0x4807: add ebx, Oxla (83c31a)
ox480a: pop ebx (5b)
0x480b: popfd (9d)
0x480d: jmp ©x458c (e97afdffff)

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P

Displacement

Carnegie Mellon University

H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In . . .
Security and Privacy Institute
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Attack Algorithm

1. Random initialization

Algorithm 1: White-box attack.

Input :F=H(E(-)). Lg, x, y, niters
Output:x

11« 0;

2 X « RandomizeAll(x);

G L a b Carn(.agie Mellf)n Unive?sity
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Attack Algorithm

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters
1. Random initialization Output:x

2. For every function:

3 while F(X) = y and i < niters do

. . f xd
a. Randomly choose from valid transformations | forfexdo
5 é «— E(x);
o g« BLP;;‘V,y);
7 0 < RandomTransformationType();
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Attack Algorithm

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters
1. Random initialization Shugubs
2. For every function:
a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation
and check gradient in embedding
8 X < RandomizeFunction(x, f, 0);
9 e — E(x);
10 (Sf = éf_éf

C L Carnegie Mellon University
y a Security and Privacy Institute



Guided Transformations

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters

1. Random initialization Output: %

2. For every function:

a. Randomly choose from valid transformations

b. Generate byte changes using chosen transformation

c. If byte changes align with loss gradient —accept and
move on to next part of function. If not, discard and
go back tostep b

d. Execute until all instructions in function have been “
reached »

if g - 5¢ > 0 then

| X« X;

end

C L Carnegie Mellon University
y a Security and Privacy Institute



Attack Algorithm

Algo

rithm 1: White-box attack.

Input :F=H(E(:)), Lg, x, y, niters

1. Random initialization

2. For every function:
a.--d. ..

3. Repeat step 2 until success or 200 iterations

G oR W N

LI )

10

11

12

13

1

15

16 end

Output:x

0;

X « RandomizeAll(x);

while F(X) = y and i < niters do

for f € x do
é — E(x);
dlg(X,y) .
aeé ?
0 < RandomTransformationType();

g(—

X « RandomizeFunction(x, f,0);
e — E(x);

Of =& — &f;

if g - 5¢ > 0 then

| %%

end
end
ie—i+1;

17 return x;

CylLa
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Experiment Setup — Dataset

» 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either O or >40 AV detections

VTFeed | Train Val. Test

Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906
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Experiment Setup — Dataset

» 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either O or >40 AV detections

* Labeled as benign (resp. malicious) if classified malicious by O (resp. >40) antivirus
vendors aggregated by VirusTotal

e 139K benign and 139K malicious, shuffled, and randomly partitioned into
Train (80%), Validation (10%), and Test (10%) sets

VTFeed | Train Val. Test

Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906

C L Carnegie Mellon University
y a Security and Privacy Institute



Experiment Setup — DNNs

State-of-the-art architectures we trained: | Raw Byte |—{ Embedding| Fully Connected

Architecture diagram of MalConv model (from Raff et al.)

Temporal Max-Poo]ingj

* MalConv — proposed by Raff et al.

e Avast — proposed by Krcal et al.

Accuracy TPR @
Train Val. Test 0.1% FPR
MalConv | 99.97% 98.67% 98.53% 96.08%

* Based on MalConv architecture
* Trained on 600K binaries, evenly distributed between benign and malicious
* 92% detection rate when restricted to a false positive rate of 0.1%

H. S. Anderson and P. Roth. 2018. Ember: An Open Dataset for Training Static PE Malware Machine Learning Models .arXiv
preprint arXiv:1804.04637(2018).

M. Krcal et al. “Deep Convolutional Malware Classifiers Can Learn from Raw Executables and Labels Only.” ICLR (2018). Cy La Carnegie Mellon University

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv . . .
Security and Privacy Institute

[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.



Results — DNNs and Malware Samples

Malware samples used to construct adversarial examples

* 100 sampled from VirusTotal (aggregates binaries and anti-virus vendor detections)

* Unpacked
» Size below models’ smallest input (512KB)
e At least 40 anti-virus detections for malware

C L Carnegie Mellon University
y a Security and Privacy Institute



Experiment Setup — Measuring Success

Experiment methods
* 10 repetitions of each experiment

e Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

C L Carnegie Mellon University
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Experiment Setup — Measuring Success

. - Success
. - Failure

* 10 repetitions of each experiment BinqrieS

Experiment methods

e Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least
one of the trials

HEEEN -
VV VR X

Coverage = 3/5 = 60%

C L Carnegie Mellon University
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Experiment Setup — Measuring Success

. - Success
. - Failure

* 10 repetitions of each experiment Binqries

Experiment methods

| 1
e Deemed successful if an attack can reduce maliciousness score to -
below 0.1% FPR threshold (0.5 for Endgame) =====

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least

* Potency — fraction of trials that succeeded, over all binaries Coverage = 3/5 = 60%
Potency = 8/25=32%

one of the trials

C L Carnegie Mellon University
y a Security and Privacy Institute
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Experiment Setup — Measuring Success

Experiment methods

* 10 repetitions of each experiment

* Deemed successful if an attack can reduce maliciousness score to

below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least

one of the trials

* Potency — fraction of trials that succeeded, over all binaries

Cyla

. - Success
. - Failure

Binqries

Coverage = 3/5 = 60%
Potency = 8/25=32%
Coverage = Potency

Carnegie Mellon University
Security and Privacy Institute
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Results — Overall
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Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars
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Results — Overall
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Results — Overall
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Results — Overall
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Results — Overall

£100

T 80l Avast

-"§ [ Endgame
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2

]

wn

B Qoo
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Random

Attack success rates in the white-box setting

Disp-5

IPR+Disp-1

* Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp < IPR+Disp

Cyla

IPR+Disp-3 IPR+Disp-5
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IPR attacks against Endgame
Binary 785728

Results — Attack Behavior 100
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IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials
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Results — Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials

Maliciousness

100 .
1
80 -
604 | o ]
Pe ~ 1
' ey
\ ,’
40 4 \\~___’,
T T T
0 50 100 150
lterations

C L Carnegie Mellon University
y a Security and Privacy Institute

200



Results — Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials
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IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100 .
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IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials
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IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100

Attack behavior varies on a single binary
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IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials
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Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
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models and attacked binaries
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Results — Contrasting Attack Types
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Results — Contrasting Attack Types
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Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
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Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

G L Carnegie Mellon University @
VirusTotal. https://www.virustotal.com/. Online y a Security and Privacy Institute



Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs
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Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs

Adversarially transformed malicious binaries were detected
by a median of 33-36/68 AVs

C L Carnegie Mellon University
VirusTotal. https://www.virustotal.com/. Online y a SeCU"”’)’ and PrivaC)’ Institute



Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement
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Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement

e Masking random instructions — effective when masking over 25% of instructions

C L Carnegie Mellon University
y a Security and Privacy Institute



Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement
e Masking random instructions — effective when masking over 25% of instructions

e Adversarial training — currently not computationally feasible

C L Carnegie Mellon University
y a Security and Privacy Institute



Summary

* Described a process for modifying executable bytes of a binary to produce
adversarial examples

* Best attack succeeded in evading detection from all malware classification DNNs
on nearly every binary

* Functionally preserving transformation code available on Github

* Does not contain attack algorithm
 https://github.com/pwwl/enhanced-binary-diversification

e Thank you for your time!
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