
1

Malware Makeover: Breaking ML-based
Static Analysis by Modifying Executable Bytes

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre

2

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

3

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

4

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

5

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

Creating useful defenses requires knowledge of how ML models can be attacked

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/

6

Deep Neural Networks (DNNs) for Static Malware Detection

Program binary represented as variable length sequence of integers/bytes
• A single byte’s meaning depends on the values of bytes around it
• Byte values are treated as categorical

• Absolute difference between byte values has no meaning

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

7

Deep Neural Networks (DNNs) for Static Malware Detection

Program binary represented as variable length sequence of integers/bytes
• A single byte’s meaning depends on the values of bytes around it
• Byte values are treated as categorical

• Absolute difference between byte values has no meaning

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

8

Attacking ML Algorithms – Adversarial Examples

Adversarial Example
(image from Goodfellow 2015)

Attacks use classifier’s trained weights to craft imperceptible adversarial noise (or
perturbations) to cause misclassification

• Fast Gradient Sign Method (FGSM)
• Projected Gradient Descent (PGD)

+ 0.007x =

“Panda” “Gibbon”

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” arXiv [stat.ML]. arXiv.
http://arxiv.org/abs/1412.6572.

9

Attacking DNNs for Static Malware Detection

Must ensure all byte changes preserve binary functionality
Assume whitebox access to target model (can view trained weights)
• Our paper also examines a blackbox threat model

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

10

Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In
Proc. AsiaCCS.

11

Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR)

To modify binaries without changing
functionality, use functionality
preserving transformations:

• In-Place Replacement (IPR)

• Four types: preserv, swap, reorder,

equiv

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In
Proc. AsiaCCS.

12

Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR) Displacement

To modify binaries without changing
functionality, use functionality
preserving transformations:

• In-Place-Replacement (IPR)

• Four types: preserv, swap, reorder,

equiv

• Displacement (Disp)

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In
Proc. AsiaCCS.

...
0x4587:
0x458b:
0x458f:
...

...
add ax, 0x10
sub bx, 0x10
cmp ax, bx
...

...
(6683c010)
(6683eb10)
(6639d8)
...

...
0x4587:
0x458c:
0x458f:
...

...
0x4800:
0x4804:
0x4808:
0x4805:
0x4806:
0x4807:
0x480a:
0x480b:
0x480d:
...

...
jmp 0x4800
mov cx, cx
cmp ax, bx
...

...
add ax, 0x10
sub bx, 0x10
nop
pushfd
push ebx
add ebx, 0x1a
pop ebx
popfd
jmp 0x458c
...

...
(e974020000)
(6689c9)
(6639d8)
...

...
(6683c010)
(6683eb10)
(90)
(9c)
(53)
(83c31a)
(5b)
(9d)
(e97afdffff)
...

13

Attack Algorithm

1. Random initialization

14

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations

15

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation

and check gradient in embedding

16

Guided Transformations

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation
c. If byte changes align with loss gradient – accept and

move on to next part of function. If not, discard and
go back to step b

d. Execute until all instructions in function have been
reached

17

Attack Algorithm

1. Random initialization

2. For every function:

a. -- d. …

3. Repeat step 2 until success or 200 iterations

18

Experiment Setup – Dataset

• 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

19

Experiment Setup – Dataset

• 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

• Labeled as benign (resp. malicious) if classified malicious by 0 (resp. >40) antivirus
vendors aggregated by VirusTotal

20

Experiment Setup – Dataset

• 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

• Labeled as benign (resp. malicious) if classified malicious by 0 (resp. >40) antivirus
vendors aggregated by VirusTotal

• 139K benign and 139K malicious, shuffled, and randomly partitioned into
Train (80%), Validation (10%), and Test (10%) sets

21

Experiment Setup – DNNs

State-of-the-art architectures we trained:

• MalConv – proposed by Raff et al.

• Avast – proposed by Krčál et al.

Endgame – pre-trained DNN (Anderson et al.)
• Based on MalConv architecture
• Trained on 600K binaries, evenly distributed between benign and malicious
• 92% detection rate when restricted to a false positive rate of 0.1%

Architecture diagram of MalConv model (from Raff et al.)

H. S. Anderson and P. Roth. 2018. Ember: An Open Dataset for Training Static PE Malware Machine Learning Models .arXiv
preprint arXiv:1804.04637(2018).
M. Krcál et al. “Deep Convolutional Malware Classifiers Can Learn from Raw Executables and Labels Only.” ICLR (2018).
E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

22

Results – DNNs and Malware Samples

Malware samples used to construct adversarial examples

• 100 sampled from VirusTotal (aggregates binaries and anti-virus vendor detections)

• Unpacked
• Size below models’ smallest input (512KB)
• At least 40 anti-virus detections for malware

23

Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Experiment Setup – Measuring Success

24

Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

• Coverage – fraction of binaries an attack was successful in at least
one of the trials

Experiment Setup – Measuring Success

T
ria

ls

Binaries

- Success

- Failure

Coverage = 3/5 = 60%

25

Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

• Coverage – fraction of binaries an attack was successful in at least
one of the trials

• Potency – fraction of trials that succeeded, over all binaries

Experiment Setup – Measuring Success

T
ria

ls

Binaries

- Success

- Failure

Coverage = 3/5 = 60%
Potency = 8/25 = 32%

26

Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

• Coverage – fraction of binaries an attack was successful in at least
one of the trials

• Potency – fraction of trials that succeeded, over all binaries

Experiment Setup – Measuring Success

T
ria

ls

Binaries

Coverage = 3/5 = 60%
Potency = 8/25 = 32%
Coverage ≥ Potency

- Success

- Failure

27

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

28

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR

29

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR

30

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR

31

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR

32

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp

33

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp

34

Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp < IPR+Disp

35

Results – Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

36

Results – Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

37

Results – Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

38

Results – Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

39

Results – Attack Behavior

Attack behavior varies on a single binary

Attack behavior varies between different
binaries, depending on many variables

IPR attacks against Endgame

40

Results – Attack Behavior

Attack behavior varies on a single binary

Attack behavior varies between different
binaries, depending on many variables

IPR attacks against Endgame

41

Results – Attack Behavior

Attack behavior varies on a single binary

Attack behavior varies between different
binaries, depending on many variables

IPR attacks against Endgame

42

Results – Attack Behavior

Attack behavior varies on a single binary

Attack behavior varies between different
binaries, depending on many variables

IPR attacks against Endgame

43

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

44

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

45

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

46

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

47

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

48

Results – Effects on Anti-Viruses

VirusTotal. https://www.virustotal.com/. Online

Unmodified malicious binaries were detected by a median
of 55/68 AVs

49

Results – Effects on Anti-Viruses

VirusTotal. https://www.virustotal.com/. Online

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs

50

Results – Effects on Anti-Viruses

VirusTotal. https://www.virustotal.com/. Online

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs

Adversarially transformed malicious binaries were detected
by a median of 33-36/68 AVs

51

Potential Defenses

• Binary normalization – effective against IPR, ineffective against Displacement

52

Potential Defenses

• Binary normalization – effective against IPR, ineffective against Displacement

• Masking random instructions – effective when masking over 25% of instructions

53

Potential Defenses

• Binary normalization – effective against IPR, ineffective against Displacement

• Masking random instructions – effective when masking over 25% of instructions

• Adversarial training – currently not computationally feasible

54

Summary

• Described a process for modifying executable bytes of a binary to produce
adversarial examples

• Best attack succeeded in evading detection from all malware classification DNNs
on nearly every binary

• Functionally preserving transformation code available on Github

• Does not contain attack algorithm
• https://github.com/pwwl/enhanced-binary-diversification

• Thank you for your time!

55

Malware Makeover: Breaking ML-based
Static Analysis by Modifying Executable Bytes

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre

