Malware Makeover: Breaking ML-based
Static Analysis by Modifying Executable Bytes

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre

Carnegie

Mellon Duk
University Hise

‘ vmware v’ NortonLifeLack

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus ?view=0365-worldwide
https://www.kasperskycom/enter.prlse-securlty/\(vlkl—sectlorj/produc_ts/machme—learnmg—ln—cybersecunty Carnegie Mellon University
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html a s . d Pri | LY
https://www.deepinstinct.com/ ecurity an rivacy Institute

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus ?view=0365-worldwide
https://www.kasperskycom/enter.pnse-securlty/\(\/lkl—sectlorj/produc_ts/machme—learnmg—ln—cybersecunty Carnegie Mellon University
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html a s it d Pri Instit 1_'
https://www.deepinstinct.com/ ecurity an rivacy Institute

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats
Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus ?view=0365-worldwide
https://www.kasperskycom/enter.pnse-securlty/\(\/lkl—sect|or1/produc_ts/machme—learnmg—ln—cybersecunty Carnegie Mellon University
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html a s it d Pri Instit 1-'
https://www.deepinstinct.com/ ecurity an rivacy Institute

Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats
Machine learning (ML) models show promise / are in use for detection
But, malware classification models may be susceptible to evasion

Creating useful defenses requires knowledge of how ML models can be attacked

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus ?view=0365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity

(: Carnegie Mellon University
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html La S'K .é d Pri I er
https://www.deepinstinct.com/ ecurity and Privacy Institute

Deep Neural Networks (DNNs) for Static Malware Detection

DNN

o)
O O—+0—+p(cy)
O y

O ' O—+0—+p(cz)
O

© 9999
4 888880

./'

Program binary represented as variable length sequence of integers/bytes
e Asingle byte’s meaning depends on the values of bytes around it
* Byte values are treated as categorical

* Absolute difference between byte values has no meaning

Carnegie Mellon University

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv y La d
C Security and Privacy Institute

[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

Deep Neural Networks (DNNs) for Static Malware Detection

DNN Malware
o (p>05)

g O+0+plcy) \ Benign

0 (p<0.5)

™
./"

Program binary represented as variable length sequence of integers/bytes
e Asingle byte’s meaning depends on the values of bytes around it
* Byte values are treated as categorical

* Absolute difference between byte values has no meaning

° 2999
¢: 888880

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv ‘ La Carn(.%gle Mell(.)n UIllVe%'SIty
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435. y Securlfy and Prlvacy Institute

Attacking ML Algorithms — Adversarial Examples

+ 0.007x

“Panda”

Adversarial Example

(image from Goodfellow 2015)

Attacks use classifier’s trained weights to craft imperceptible adversarial noise (or
perturbations) to cause misclassification

* Fast Gradient Sign Method (FGSM)

* Projected Gradient Descent (PGD)

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” arXiv [stat.ML]. arXiv. ‘ La Carnegle Mellon UIIIVGI'SIty
http://arxiv.org/abs/1412.6572. y Security and Privacy Institute

Attacking DNNs for Static Malware Detection

DNN Malware
0 >0.5
2 5,709
::_% z O0+p(e) \ Benign
NS (p<0.5)

Must ensure all byte changes preserve binary functionality
Assume whitebox access to target model (can view trained weights)
e Qur paper also examines a blackbox threat model

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv ‘ La Carnf‘/gle Mell?n UIllVe?SIty
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435. y Securlty and Prlvacy Institute

Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P. Carnegie Mellon University
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In La . . i .) I

Proc. AsiaCCS C Security and Privacy Institute

Creating Adversarial Examples from Binaries

To modify binaries without changing
functionality, use functionality
preserving transformations:

* In-Place Replacement (IPR)

* Four types: preserv, swap, reorder,
equiv

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using

In-Place Code Randomization.” 2012. In Proc. IEEE S&P.

mov edx, [ebp+4] (8b5504)
sub edx, -0x10 (83eafo)
mov ebx, [ebp+8] (8b5d0e8)
mov [ebx], edx (8913)

mov ebx, [ebp+8] (8b5des8)
mov edx, [ebp+4] (8b5504)
sub edx, -0x10 (83eaf0)
mov [ebx], edx (8913)

Reorder (1/4 IPR)

H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In

Proc. AsiaCCS.

Cyla

Carnegie Mellon University
Security and Privacy Institute

Creating Adversarial Examples from Binaries

é;;587: ;éé ax, 0x10 iéé83c010)
0x458b: sub bx, ©x10 (6683eb10)
. 0x458F: , b 6639d8
To modify binaries without changing > e b (e
functionality, use functionality
preserving transformations:
ox4587: Jmp 0x4800 iéénezaaee)
0x458c: mov cX, cX (6689¢9)
ox458f: cmp ax, bx (6639d8)
é;ASOG: ééé ax, 0x10 Eéé83c010)
0x4804: sub bx, 0x1@ (6683eb10)
1 1 0x4808: 920
* Displacement (Disp) oxigos: puehd o0
0x4806: push ebx (53)
0x4807: add ebx, Oxla (83c31a)
ox480a: pop ebx (5b)
0x480b: popfd (9d)
0x480d: jmp ©x458c (e97afdffff)

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization.” 2012. In Proc. IEEE S&P

Displacement

Carnegie Mellon University

H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In . . .
Security and Privacy Institute

Proc. AsiaCCS.

Cyla

Attack Algorithm

1. Random initialization

Algorithm 1: White-box attack.

Input :F=H(E(-)). Lg, x, y, niters
Output:x

11« 0;

2 X « RandomizeAll(x);

G L a b Carn(.agie Mellf)n Unive?sity
Security and Privacy Institute

Attack Algorithm

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters
1. Random initialization Output:x

2. For every function:

3 while F(X) = y and i < niters do

. . f xd
a. Randomly choose from valid transformations | forfexdo
5 é «— E(x);
o g« BLP;;‘V,y);
7 0 < RandomTransformationType();

G L Carnegie Mellon University @
y a Security and Privacy Institute

Attack Algorithm

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters
1. Random initialization Shugubs
2. For every function:
a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation
and check gradient in embedding
8 X < RandomizeFunction(x, f, 0);
9 e — E(x);
10 (Sf = éf_éf

C L Carnegie Mellon University
y a Security and Privacy Institute

Guided Transformations

Algorithm 1: White-box attack.

Input :F=H(E(-)), Lg, x, y, niters

1. Random initialization Output: %

2. For every function:

a. Randomly choose from valid transformations

b. Generate byte changes using chosen transformation

c. If byte changes align with loss gradient —accept and
move on to next part of function. If not, discard and
go back tostep b

d. Execute until all instructions in function have been “
reached »

if g - 5¢ > 0 then

| X« X;

end

C L Carnegie Mellon University
y a Security and Privacy Institute

Attack Algorithm

Algo

rithm 1: White-box attack.

Input :F=H(E(:)), Lg, x, y, niters

1. Random initialization

2. For every function:
a.--d. ..

3. Repeat step 2 until success or 200 iterations

G oR W N

LI)

10

11

12

13

1

15

16 end

Output:x

0;

X « RandomizeAll(x);

while F(X) = y and i < niters do

for f € x do
é — E(x);
dlg(X,y) .
aeé ?
0 < RandomTransformationType();

g(—

X « RandomizeFunction(x, f,0);
e — E(x);

Of =& — &f;

if g - 5¢ > 0 then

| %%

end
end
ie—i+1;

17 return x;

CylLa

Carnegie Mellon University
Security and Privacy Institute

Experiment Setup — Dataset

» 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either O or >40 AV detections

VTFeed | Train Val. Test

Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906

C L Carnegie Mellon University
y a Security and Privacy Institute

Experiment Setup — Dataset

» 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either O or >40 AV detections

* Labeled as benign (resp. malicious) if classified malicious by O (resp. >40) antivirus
vendors aggregated by VirusTotal

VTFeed | Train Val. Test

] Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906

C L Carnegie Mellon University
y a Security and Privacy Institute

Experiment Setup — Dataset

» 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020,
collected from VirusTotal feed (VTFeed), either O or >40 AV detections

* Labeled as benign (resp. malicious) if classified malicious by O (resp. >40) antivirus
vendors aggregated by VirusTotal

e 139K benign and 139K malicious, shuffled, and randomly partitioned into
Train (80%), Validation (10%), and Test (10%) sets

VTFeed | Train Val. Test

Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906

C L Carnegie Mellon University
y a Security and Privacy Institute

Experiment Setup — DNNs

State-of-the-art architectures we trained: | Raw Byte |—{ Embedding| Fully Connected

Architecture diagram of MalConv model (from Raff et al.)

Temporal Max-Poo]ingj

* MalConv — proposed by Raff et al.

e Avast — proposed by Krcal et al.

Accuracy TPR @
Train Val. Test 0.1% FPR
MalConv | 99.97% 98.67% 98.53% 96.08%

* Based on MalConv architecture
* Trained on 600K binaries, evenly distributed between benign and malicious
* 92% detection rate when restricted to a false positive rate of 0.1%

H. S. Anderson and P. Roth. 2018. Ember: An Open Dataset for Training Static PE Malware Machine Learning Models .arXiv
preprint arXiv:1804.04637(2018).

M. Krcal et al. “Deep Convolutional Malware Classifiers Can Learn from Raw Executables and Labels Only.” ICLR (2018). Cy La Carnegie Mellon University

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv . . .
Security and Privacy Institute

[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.

Results — DNNs and Malware Samples

Malware samples used to construct adversarial examples

* 100 sampled from VirusTotal (aggregates binaries and anti-virus vendor detections)

* Unpacked
» Size below models’ smallest input (512KB)
e At least 40 anti-virus detections for malware

C L Carnegie Mellon University
y a Security and Privacy Institute

Experiment Setup — Measuring Success

Experiment methods
* 10 repetitions of each experiment

e Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

C L Carnegie Mellon University
y a Security and Privacy Institute

Experiment Setup — Measuring Success

. - Success
. - Failure

* 10 repetitions of each experiment BinqrieS

Experiment methods

e Deemed successful if an attack can reduce maliciousness score to
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least
one of the trials

HEEEN -
VV VR X

Coverage = 3/5 = 60%

C L Carnegie Mellon University
y a Security and Privacy Institute

sreuL

Experiment Setup — Measuring Success

. - Success
. - Failure

* 10 repetitions of each experiment Binqries

Experiment methods

| 1
e Deemed successful if an attack can reduce maliciousness score to -
below 0.1% FPR threshold (0.5 for Endgame) =====

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least

* Potency — fraction of trials that succeeded, over all binaries Coverage = 3/5 = 60%
Potency = 8/25=32%

one of the trials

C L Carnegie Mellon University
y a Security and Privacy Institute

sreuL

Experiment Setup — Measuring Success

Experiment methods

* 10 repetitions of each experiment

* Deemed successful if an attack can reduce maliciousness score to

below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

» Coverage — fraction of binaries an attack was successful in at least

one of the trials

* Potency — fraction of trials that succeeded, over all binaries

Cyla

. - Success
. - Failure

Binqries

Coverage = 3/5 = 60%
Potency = 8/25=32%
Coverage = Potency

Carnegie Mellon University
Security and Privacy Institute

sreuL

Results — Overall

£100

T 80 Avast
a Endgame

Z 60 wmm MalConv
2
T —
w

B 20 e
2

s 0 Random

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

CylLa

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast

-"Ua" Endgame

2 60/ wmm MalConv

£ 40 —
2 20 /

g

z 0

Random IPR

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast

-"Ua" Endgame
2 60/ wmm MalConv
g

z 0

Random IPR

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast

i Endgame

2 60/ wmm MalConv

£ 40 —
[+

£ 0

@ Random IPR

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast

i Endgame

2 60/ wmm MalConv -

[+

£ 0

@ Random IPR

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast
-"v;: [Endgame

e 60 wmm MalConv
2

£ A0

wn

L 1

- -

s3]

Random

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80 Avast
-"v;: [Endgame

e 60 wmm MalConv
2

) e

wn

L 1

- -

s3]

Random

Attack success rates in the white-box setting
* Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp

Cyla

Carnegie Mellon University
Security and Privacy Institute

Results — Overall

£100

T 80l Avast

-"§ [Endgame

z 60/ wmm MalConv

2

]

wn

B Qoo

g -
Random

Attack success rates in the white-box setting

Disp-5

IPR+Disp-1

* Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp < IPR+Disp

Cyla

IPR+Disp-3 IPR+Disp-5

Carnegie Mellon University
Security and Privacy Institute

IPR attacks against Endgame
Binary 785728

Results — Attack Behavior 100
)]
O g0
G
Attack behavior varies on a single binary 2 o
[
T
= 40
0 SID l[I}D lSID ZEI]"D

lterations

C L Carnegie Mellon University
y a Security and Privacy Institute

IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100 .
W 1
$ 80 4 ‘
G

Attack behavior varies on a single binary 2 o ~
5 .
5 [
= 40

0 SID l[I}D lSID 200

lterations

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials

Maliciousness

100 .
1
80 -
604 | o]
Pe ~ 1
' ey
\ ,’
40 4 \\~___’,
T T T
0 50 100 150
lterations

C L Carnegie Mellon University
y a Security and Privacy Institute

200

Results — Attack Behavior

Attack behavior varies on a single binary

IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials

U4
100 N
\
7 1
U 80 !
C 1
T]
3 '
9O 60 !
U /
—_ = /
m | ~
= 40
T T T
0 50 100 150 200

lterations

C L Carnegie Mellon University
y a Security and Privacy Institute

IPR attacks against Endgame

Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100 .
m 1
L 80
G
Attack behavior varies on a single binary 2 o ~
5 .
Attack behavior varies between different E wl
binaries, depending on many variables . . .
0 50 100 150
lterations
1.0
05 /‘;‘
£0.6
50.4
0.2
0-0% 500

modifiable function count

(a) Success (all attacks)

C L Carnegie Mellon University
y a Security and Privacy Institute

200

IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100 .
m ’
un 1
@ 80
-
=
Attack behavior varies on a single binary 2 604 '
u q
Attack behavior varies between different S o] "
binaries, depending on many variables . . .
0 50 100 150 200
lterations
1.07— =100 =100 =100 200
0.8} § 80 £ 580 £ 5 BOp -
0.6 T 60 % © 60 I | S——
O . 2] 3) 3
1 © 40 = T 40 I S 1 |
" 8 E g E &
g Jpp | 'RESRURERSPERSITRPENSESSNES RES o 20+ = o 201 g o 20«
E , E E o
' 500 “ 0% 500 Y = g 500 0 = 0% 500 v
modifiable function count modifiable function count modifiable function count modifiable function count
(a) Success (all attacks) (b) Time (all attacks) (c) Time (IPR) (d) Time (Disp)

G L 3 Carnegie Mellon University @
Security and Privacy Institute

num iterations

IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100

Attack behavior varies on a single binary

Maliciousness
[=}]
o

Attack behavior varies between different wl *
binaries, depending on many variables . . .
0 50 100 150 200
lterations
110 P 5100 200 ElOO 0 100 200
Q8 S 80 : 1505 & 80 £ § BOp 150 §
" ° . = e — e -
] e B Ofafel @ B 601~ % © 60} @
g |t 2 . 1005 £ g & 100 @
5041 = 40f = L a0 2 L 40 2
L g £ 8 £ 4 £
0.2 o 204 02 o2 2 o 20 N £
£ £ £ LR
— 0 500 . 0 500 v . 0 500 . . 0 500 .
modifiable function count modifiable function count modifiable function count modifiable function count
(a) Success (all attacks) (b) Time (all attacks) (c) Time (IPR) (d) Time (Disp)

G L Carnegie Mellon University @
y a Security and Privacy Institute

IPR attacks against Endgame
Binary 785728 | 30.0% Potency | 10 Trials

Results — Attack Behavior 100

Attack behavior varies on a single binary

Maliciousness
[=}]
o

Attack behavior varies between different wl *
binaries, depending on many variables . . .
0 50 100 150 200
lterations
110 s 0 100 0 100 0 100 200
Q8 S 80 S & 80f; £ § BOp 150
" ° . = e c— e
] e C 60 % © 60} % O 60}
¥ . 2 o ot 0 2
L 40t 2 T 40 2 T 40f
g e & e &
0.2 v 20t 2 o 20 z o 20
£ , £ £ =
— 0 500 . 0 500 v . 0 500 . . 0 500 .
modifiable function count modifiable function count modifiable function count modifiable function count
(a) Success (all attacks) (b) Time (all attacks) (c) Time (IPR) (d) Time (Disp)

G L Carnegie Mellon University @
y a Security and Privacy Institute

num iterations

Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
100
e
e 75- . . .
]
© - 4 - 4
v 20 0.01 0.01
= 25 A -/ - —— 0.03 B — 0.03
S — 0.05 — 0.05
O 1 1 1 1 1 I 1 1 1 I T T
0 10° 10! 102 0 10° 10! 102 0 10° 101! 102 0 10° 10! 102

Num iterations

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
100
e
e 75- . . .
]
© - 4 - 4
v 20 0.01 0.01
= 25 A -/ - —— 0.03 B —— 0.03
S — 0.05 — 0.05
O 1 1 1 1 1 I 1 1 1 I T T
0 10° 10! 102 0 10° 10! 102 0 10° 101! 102 0 10° 10! 102

Num iterations

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
100
e
e 75- . . .
]
© - 4 - 4
v 20 0.01 0.01
= 25 A -/ - —— 0.03 B —— 0.03
S — 0.05 — 0.05
O 1 1 1 1 1 I 1 1 1 I T T
0 10° 10! 102 0 10° 10! 102 0 10° 101! 102 0 10° 10! 102

Num iterations

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
100

e

e 75- . . .

A

T] 4 - 4

v 20 0.01 0.01

E 254 / | — 003 | | — 0.03

B> — 0.05 — 0.05
O 1 1 1 1 1 I 1 1 1 I T 1
0 100 100 102 0 10° 100 102 0 10° 100 102 0 10° 10t 102

Num iterations

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Contrasting Attack Types

Random IPR Disp IPR+Disp
100

o F
& 751 . . -
]
© J i i i
v 20 0.01 0.01
= 25 A -/ & —— 0.03 e — 0.03
X — 0.05 — 0.05

O 1 T 1 1 1 I T 1 1 I T T

0 10° 10! 102 0 10° 10! 102 0 10° 10! 102 0 10° 10! 107

Num iterations

Attack success rates at each iteration in the white-box setting averaged over all target
models and attacked binaries

C L Carnegie Mellon University
y a Security and Privacy Institute

Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

G L Carnegie Mellon University @
VirusTotal. https://www.virustotal.com/. Online y a Security and Privacy Institute

Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs

G L Carnegie Mellon University @
VirusTotal. https://www.virustotal.com/. Online y a SeCU"”’Y and PrivaC)’ Institute

Results — Effects on Anti-Viruses

Unmodified malicious binaries were detected by a median
of 55/68 AVs

Randomly transformed malicious binaries were detected by
a median of 42/68 AVs

Adversarially transformed malicious binaries were detected
by a median of 33-36/68 AVs

C L Carnegie Mellon University
VirusTotal. https://www.virustotal.com/. Online y a SeCU"”’)’ and PrivaC)’ Institute

Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement

G L 3 Carnegie Mellon University @
Security and Privacy Institute

Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement

e Masking random instructions — effective when masking over 25% of instructions

C L Carnegie Mellon University
y a Security and Privacy Institute

Potential Defenses

* Binary normalization — effective against IPR, ineffective against Displacement
e Masking random instructions — effective when masking over 25% of instructions

e Adversarial training — currently not computationally feasible

C L Carnegie Mellon University
y a Security and Privacy Institute

Summary

* Described a process for modifying executable bytes of a binary to produce
adversarial examples

* Best attack succeeded in evading detection from all malware classification DNNs
on nearly every binary

* Functionally preserving transformation code available on Github

* Does not contain attack algorithm
 https://github.com/pwwl/enhanced-binary-diversification

e Thank you for your time!

C L Carnegie Mellon University
y a Security and Privacy Institute

Malware Makeover: Breaking ML-based
Static Analysis by Modifying Executable Bytes

Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, Saurabh Shintre

Carnegie &8 vmware

DUke %/IG!IOII . v NortonLifelLock’
niversity

